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We consider the time evolution of a layer of fresh water placed on top of a layer of 
salt water in a laboratory tank when denser salt water is supplied to a nozzle at the 
free surface. The inflow is carried out slowly so as to  form a pure plume, which a t  
first does not penetrate through the interface. The two basic processes that govern 
the time evolution of the initially fresh-water layer are the filling-box process (Baines 
& Turner 1969) and the entrainment through the end of the plume which impinges 
upon the density interface. A theoretical model that takes these two processes into 
account is presented, with the numerical solution of the asymptotic state, valid a t  
large times. The asymptotic solution and experiment are in good agreement ; the 
theory describes well the vertical buoyancy profile, the change in buoyancy difference 
across the interface with time, and the time when the plume begins to penetrate 
through the interface. The entrainment rate obtained from changes in thickness of 
the upper layer with time can be expressed as a function of the Froude number. The 
functional dependence is close to Fr3 at small values of Fr, and it approaches a finite 
limit as Fr increases. The buoyancy flux across the interface, which is non- 
dimensionalized by the rate of buoyancy input, also changes as a function of Fr, 
taking a maximum value of 0.168 at Fr = 0.46 and decreasing sharply a t  larger and 
smaller Proude numbers. These values agree well with those found from field 
observations and experiments on the entrainment a t  the boundary of convectively 
mixed layers. It is pointed out that some earlier results of Baines (1975) are not 
consistent with the model presented here. 

1. Introduction 
Penetrative convection is defined as the process whereby convective motions 

arising in an unstable region penetrate into an adjacent stable layer (Turner 1973). 
Important examples of this process include the development of the turbulent 
atmospheric boundary layer during early-morning heating in the absence of strong 
wind, and the deepening of the thermocline in the ocean and in lakes caused by surface 
cooling. Since the concentrations of matter, for example pollutants emitted from 
smoke stacks into the atmospheric boundary layer and nutrients in the upper oceanic 
mixed layer, largely depend on the thickness of the layers, it is of particular 
importance to  elucidate the mechanisms that control the thickness. It is known that 
the mixed-layer thickness depends on the concentrations of variables within, and the 
fluxes of variables across, the boundary layer. Many field observations on the 
atmospheric boundary layer have shown that heat transfer is conducted by way of 
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rising plumes or thermals originating near the surface shear layer and the downdraught 
in the gap between the thermals (e.g. Warner & Telford 1963, 1967; Kaimal et al. 
1976). These convective cells have been clearly visualized by radar (Hardy & 
Ottersten 1969; Konrad 1970; Arnold et al. 1975), showing a dome-like depression 
at the interface produced by the impingement by the thermal, and Arnold et al. 
concluded from their data that most of the entrainment from the inversion takes place 
along the top of the dome. Laboratory experiments on penetrative convection by 
Deardorff, Willis & Lilly (1969), Deardorff, Willis & Stockton (1980) and Kantha 
(1980) have also shown that convective elements such as buoyant plumes or thermals 
play an important role in redistributing properties within the mixed layer and in 
entraining fluid from an adjacent stable layer. 

We have investigated these two processes of mixing and entrainment using a salt 
plume discharged from a nozzle a t  the middle of the free surface of a water column 
that is initially stratified in two layers. Experiments on penet,rative convection 
reported so far have all been carried out using a uniform distribution of buoyancy 
flux. The use of an isolated source allows us to understand the dynamics of the plume 
and environment explicitly. By this means the observed buoyancy flux across a 
density interface will be given a clear physical explanation, and the relation to the 
entrainment experiments using oscillating grids by Turner (1968) and others will be 
made clear. 

A theoretical model to be developed in this paper to describe the motion of a plume 
in a confined two-layered region draws heavily on the filling-box model of Baines & 
Turner (1968, hereinafter referred to as BT). A good example of this process may be 
found in a room that is heated by a stove (with negligible radiation) at  the centre 
of the floor. It is a common experience that it takes a long time until the air around 
people in the room becomes warm, although the air near the ceiling is heated quickly. 
The essential feature of this process is that the air heated by the stove is lifted towards 
the ceiling by buoyancy, spreads out along the ceiling and fills the room gradually 
from above. An important consequence is that a stable temperature gradient is 
produced in spite of the fact that the room is heated from below. This process, first 
extensively investigated by BT and now known as a ‘filling-box’ process (Turner 
1973), is encountered in many different situations, and has recently been subjected 
to extensive investigation ; for example, LNG tank stratification consequent on filling 
procedures (Smith & Germeles 1974) and stratification in a.  river-dominated lake 
(Killworth & Carmack 1979). 

This filling-box model was successfully applied to the investigation of the convective 
boundary layer. When the lower part of the atmosphere is heated from the ground, 
the heat flux is always directed upwards, but often neutral or slightly stable buoyancy 
gradients are observed (Warner & Telford 1967; Kaimal et al. 1976; Moores et al. 
1979). This cannot be predicted by simple mixing-length theory, which concludes that 
the flux must be zero or directed down the gradient of buoyancy. This phenomenon 
of ‘transport against the gradient ’ was given a clear physical explanation in terms 
of the filling-box model by BT. 

The assumption of a fixed rigid boundary, however, makes the BT model a little 
unrealistic when applied to the atmospheric boundary layer and the upper-ocean 
mixed layer. Often the capping inversion (or the thermocline) is rising (or deepening) 
with time by entraining the fluid of an adjacent stable layer. In this paper an 
extension of the BT model is presented which includes such a moving density 
interface and entrainment across it. 

This extension requires a few problems to be solved. First, the rate of entrainment 
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at  a density interface caused by the impingement of a plume must be made clear. 
Various ways to produce turbulence such as oscillating grids, a surface stress, surface 
jets and bottom currents, have been used to investigate the entrainment a t  density 
interfaces (see reviews by Turner 1973,1981 ; Sherman, Imberger & Corcos 1978), but 
there are very few reports on the entrainment by plume impingement. The second 
problem arises from the advancement of the interface into an adjacent layer owing 
to  entrainment, for a new time-dependency is introduced by an increase in depth of 
the region concerned as well as the time-dependency caused by the accumulation of 
buoyancy. Killworth & Turner (1982) have investigated plumes with time-varying 
buoyancy released from a point source in a confined region, and Worster & Huppert 
(1983) have presented an approximate analytic expression which can describe well 
the time-dependent density profile in a filling box before the asymptotic state is 
established. These two investigations have dealt with the region of constant depth, 
whereas we have to consider the effects of depth that increases with time. 

A similar problem to ours has been investigated by Baines (1975). One of his main 
results is a linear relation between the dimensionless buoyancy flux F*’ and the 
Froude number Fr, which extends up to F*‘ = 1.2 a t  Fr = 1.1. However, a simple 
energy argument indicates that  F*’ cannot exceed unity, the so-called Ball limit (Ball 
1960), and the theory presented here will show that there is a more strict restriction 
that F*’ < 0.41. About half of the data by Baines exceed this theoretical upper limit. 
Thus his results need reexamination. 

The theoretical model is presented in $2. This will cover the whole process up to 
the penetration of a plume which occurs when the density difference between the two 
layers vanishes. The theory of the asymptotic state is also presented in this section 
with some numerical solutions. A brief description of the laboratory experiments is 
given in $3, and the results are presented and some are compared with the theory 
in $4. A detailed discussion on the entrainment across the density interface is made 
in $5. First, we make comments on Baines (1975) in $5.1 to show some problems in 
his results, and then compare our results with other experiments on entrainment 
particularly by Turner (1968) and Linden (1973) in $5.2. Finally, in $5.3 we discuss 
the relevance of this work to  the laboratory experiments on penetrative convection 
and the field observations of the entrainment a t  the boundary of convectively mixed 
layers in the atmosphere and a lake. 

2. Theoretical model 
Consider the discharge of concentrated salt solution a t  a steady rate from a small 

nozzle a t  the middle of the free surface of a water column that is initially stratified 
in two layers. The volume flow rate is small enough to yield a pure buoyant plume 
which does not penetrate the interface. The evolution of the system observed is shown 
in figure I .  

On leaving the source the dense fluid forms a linearly spreading plume by 
entraining the ambient fluid. The first fluid to reach the interface spreads out and 
produces a layer with a discontinuity or front above it, marked by dye in figure 1 (a) .  
As the plume fluid successively arrives a t  the interface and spreads along it, the first 
front is pushed upwards as shown in figure 1 (b ) .  When sufficient salt has accumulated 
to cause the difference in density between the two layers to decrease to zero, the plume 
begins to penetrate through the interface as shown in figure 1 (d ) .  Figures 1 (d-f) show 
the three-layer structure formed thereafter and the transport of fluid marked by dye. 
This could be described by the BT model in principle or preferably by the numerical 
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( C )  ( f )  

FIGURE 1. Shadowgraph showing the evolution of a layered system due to the introduction of a 
plume of dense salt solution of p = 1.1344 g/ml at F = 14.1 cm4/s3. Upper layer was initially fresh 
water 8.24 cm deep. Lower layer is salt solution of pz = 1.0161 g/ml. The time from the start in 
hours, minutes and seconds is indicated by the clock a t  the bottom. Depressions of the interface 
formed by the impingement of the plume are apparent in (a)-(c), which also show the rise of the 
first front. ( c )  shows a state just before the beginning of the penetration of the plume. (d), ( e )  and 
(f) show the spread of the plume fluid after penetration, made visible by the addition of dye. (f) 
shows the resulting three-layer structure. 

model of Germeles (1975). The most significant feature of figures (a)-(c) is the 
deepening of the interface between the upper and lower layers. Apparently this can 
be attributed to the entrainment caused by the plume impingement upon the 
interface. 

We have introduced several simplifying assumptions to model the processes 
described above. First, we have assumed ‘top-hat’ profiles for the velocity and 



l’urbulent convection in a two-layered region 109 

density distributions in a plume, following Morton (1956). This is different from the 
assumption of BT and Baines (1975), who have used Gaussian profiles. Though 
essential conclusions do not depend on the exact analytic form chosen for the profiles, 
i t  should be noted that there are differences in value of plume variables; for example, 
the Froude number defined by (2.7) is 29 times larger for the Gaussian profile than 
for the top-hat profile. We have also introduced the usual assumptions of a Boussinesq 
fluid and a constant coefficient of the entrainment across the edge of a plume (Morton, 
Taylor & Turner 1956; BT). Manins (1979) has shown that the plume of the BT model 
can be considered as steady, and we assume that this is the case here. 

Then, the equations of conservation of volume, momentum and buoyancy for the 
plume become (Turner 1973) 

d 
dz 
-(b2w) = 2abw, 

d 
- dz ( b 2 W 2 )  = b2A,  

d 
dz 
-(b2wA) = 

Here z denotes the depth measured downwards from the exit of the nozzle, a is the 
entrainment coefficient, b and w are respectively the width and velocity of the plume, 
and A and A ,  are the buoyancies of the plume and the upper-layer fluid, defined by 

A =  g ( P - P l ) ,  A ,  = d P 1 -  Po) 
PO PO 

As usual g and p denote respectively acceleration due to gravity and density. 
Subscripts 1 and 2 denote the upper- and lower-layer fluids, and po is a reference 
density. Note that the buoyancy of the plume is defined relative to the ambient fluid 
a t  the same height. 

There is a weak upwelling motion with velocity U in the upper layer caused by 
the entrainment into the plume. The conservation of volume for the total area 
prescribes (see figure 2) R2U = b2w, 

where i t  has been assumed that R2 $ b2 and nR2 is the cross-sectional area of the tank. 
It is also assumed that there is no mixing or diffusion in the upper-layer environment. 
The change in buoyancy of the environment is thus described by 

(2.2) 

As the initial condition‘we assume a homogeneous upper layer with A ,  = 0 and 
thickness Ho,  and a homogeneous lower layer of buoyancy A, ,  which remains 
unchanged throughout the experiment, and that the plume begins to be supplied a t  
t = 0. The boundary conditions a t  x = 0 are to  specify the source to be a point source 
supplying buoyancy only ; 

b2wA = F ,  b2w = b2w2 = 0. (2.4) 

The interface between the upper and lower layers is a moving boundary through 
which the entrainment of the lower-layer fluid takes place, and two relations are to 
be satisfied there. The first specifies the rate of descent of the interface due to the 
entrainment. Let H be the depth of the interface measured from the nozzle exit and 
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FIGURE 2. Sketch of the plume and environment, showing the motions of water and nomenclature. 
Entrainment occurs a t  the end as well as at the side boundary of the plume. The right-hand figure 
shows schematically the velocity profile in the ambient fluid. 

Q* be the total volume flux due to the entrainment divided by 7t. Then Q* is given 

d H  
dt ’ 

Q* = R2- 

where t is the time. Baines (1975) argued that the entrainment rate must be a function 
of the local width, velocity and buoyancy difference, which can be combined into a 
single parameter, the Froude number. Linden (1973) also investigated the entrainment 
by vortex rings impinging upon a density interface in terms of the Froude number. 
We also assume that the entrainment rate is a function of the Froude number: 

where (2.7 1 

and A, ,  is the buoyancy difference across the interface. Note that Q* is non- 
dimensionalized using the local width bH and velocity wH of the plume a t  the 
interface a t  that  time. The functional form of (2.6) is left undetermined until the 
results of the experiments are presented. Equations (2.5) and (2.6) are combined to 
give the rate of increase in thickness of the upper layer as 

The second condition prescribes the relation between the buoyancies of the plume 
and upper-layer fluid at the interface. I n  order to derive this relation BT have 
assumed that, when the plume fluid reaches the boundary, i t  spreads out instantan- 
eously into a thin horizontal layer. This led to the continuity in buoyancy between 
them. I n  our experiments, however, a more complicated flow pattern was observed. 
The distinctive feature is the presence of circular depressions of the interface, which 
are continually formed and recovered ; the interface is deflected downwards by the 
impingement of a plume at one moment and then recoils upwards owing to  buoyancy. 
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This ejects the fluid accumulated in the depression upwards and spreads it a little 
distance above the interface, a t  about the height where the maximum of the 
horizontal spreading velocity appeared (figure 2). However, as Manins (1979) 
discussed, the' details of the outflow regions are of secondary importance so long as 
the region occupies only a small portion of the box. Observation has shown that the 
thickness of the outflow region in our experiments is about 35 yo of the total thickness 
of the upper layer. Though this is a little larger than the value of 25 yo estimated for 
the BT model by Manins, we assume here the same flow pattern as the BT model 
for the sake of simplicity. The validity of this assumption is checked by experiment 
later. The buoyancy balance at  the interface, which takes account of the entrainment 
of the lower-layer fluid, thus results in 

where A,,,, denotes the buoyancy of a new layer formed just underneath the upper 
layer at time t ,  and JH = bR wH. Note that the buoyancy transported by the plume 
is not d J  but ( A +  A , )  J .  It is interesting that the interfacial phenomena described 
here resemble the convective cell patterns observed at  the atmospheric inversion with 
high-power narrow-beam radars (Hardy & Ottersten 1969 ; Konrad 1970). 

In  deriving the asymptotic solution later, we shall use the total buoyancy balance 
in the upper layer given by 

$ JoH R2A, dz = F + A ,  &* (2.10) 

instead of (2.9). Use has been made of the assumption that R2 %- b2.  Applying 
Leibniz's rule for the differentiation of integrals with variable limits to (2.10) results 
in 

RzJoH%dz = F+A,,&*, (2.11) 

with the aid of (2.5), where A, ,  is the buoyancy difference across the interface defined 

A,,  = A ,  - A, (H) .  

Equations (2.1)-(2.3) subject to (2.41, (2.8) and (2.9) or (2.11) form the theoretical 
model to describe the system concerned. 

The equations have been non-dimensionalized, using the following scalings : 

(2.12) 

where primes denote non-dimensionalized variables. The dimensionless equations are 

(2.13) 
d 

dz 
7 (b"W') = 2b'w', 
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and the initial and boundary conditions become 

H = l ,  A ; = O  at t ' = O ,  

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

at z' = 0, (2.19) 

(2.20) 

(2.21) 

at z ' =  H ,  

where Fr = w ; I / ( a b ; I A i 2 ) f  and &*' = dH/dt' .  The total buoyancy balance (2.11) is 
rewritten as 

(2.22) dz' = 1 + A i 2  &*'. 

These equations show that the model includes a single dimensionless parameter A;,  
which can be externally designated. The initial depth H,  and the buoyancy input F 
are already incorporated in non-dimensionalization factors. Thus the time ti elapsed 
until penetration occurs is a function of A ;  alone. 

If the first plume fluid to reach the interface is heavier than the lower-layer fluid, 
the plume penetrates through the interface from the start. To avoid this, the 
buoyancy of the lower layer should be larger than a certain value given by 

which in dimensionless form implies that  

A ;  > O.8631**. . (2.23) 

Asymptotic solution 

BT have shown that as time elapses the system approaches an asymptotic state in 
which density is changing a t  the same rate a t  every point. This assumption needs 
careful examination, however, in the case of a two-layer system in which the 
thickness of the mixed layer and the buoyancy flux through the interface vary with 
time. If these changes during some timescale of the system are sufficiently slow, the 
state of the mixed layer will be similar to  that of a single-layer filling box and will 
approach the asymptotic state. As shown below, this condition holds true except near 
the time of penetration. 

An appropriate timescale for our case is the time necessary for the redistribution 
of fluid within the mixed layer, the so-called filling-box timescale of the order of 
R2a-%F-jH-i given by BT. A change in H during this timescale is evaluated with the 
aid of (2.8) as 

6 H / H  - f(Fr),  
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where we have used the approximation that b& wH - C L ~ F ~ H ~ .  As shown later 
(figure 12), the value of f ( F r )  is always smaller than 0.4, and for usual values of Fr 
it  is smaller than 0.1. It is thus found that the thickness of the mixed layer changes 
little during the filling-box timescale. Experimental results will show, on the other 
hand, that the buoyancy flux Aiz  &*’ also changes little in the course of an experiment, 
except a t  the initial transient stage and the final stage near penetration (figure 11) .  
Thus we may assume that the two-layer system will approach the asymptotic state 
a t  large times except near the time of penetration. 

Suppose that the density in the environment is changing at the same rate a t  all 
levels, and (2.22) is reduced to  

= l+P*’, say. (2.24) 

This equation and (2.15) and (2.17) can be combined to give a single relation which 
allows it to be integrated directly, yielding 

(2.25) 

where /3 = 1 / ( 1  +a*’) and the boundary condition (2.19) has been used to evaluate 
the constant of integration. The flux falls linearly from unity at the source, through 
0 at z‘ = P H ,  to a negative value a t  the interface z’ = H .  This means that the 
buoyancy A is negative and that the plume fluid is lighter than the ambient fluid 
near the interface. Therefore the plume fluid tends to return and spread a t  its own 
density level. This accounts for the thicker outflowing region than that of a single-layer 
filling-box process. 

Now i t  is convenient to introduce new plume variables to  express deviations from 
the solutions for a homogeneous environment. Introduction of new variables g, J ( [ )  
and 1?([) defined by 

(2.26) 

[ = z ’ / / 3 H ,  

J’ = ; (A)! Z ’ q c ) ,  

K‘ = b‘w’ = ($);z’$J?(<) 

reduces (2.13) and (2.14) to 

(2.27) 

Equation (2.25) has been used in this derivation. The boundary conditions are 

J = R = 1  at 5 = 0 .  
The deviations of the width, velocity and buoyancy of the plume denoted by 6, 22, 

and 3 are defined, and can be calculated from 9 and R, as 

(2.28) 
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b, ri,, 2 

FIGURE 3. Asymptotic solutions solved numerically by the Runge-Kutta method, shown in terms 
of deviations from the solutions for a plume in a homogeneous environment. 6+ co and d - t O  as 
5.1.41. 

The series solutions of (2.27) that satisfy the boundary condit,ions a t  < = 0 are 
obtained as 

J(5) = 1 - 0.128 2 15- 0.021 786 - 0.006 8 2 c  - 0.002 70C4 - . . . , (2.29) 

r?( 5) = 1 - 0.205 135- 0.047 9 1 6  - 0.019 09y3 - 0.009 18C4 - . . . . (2.30) 

Figure 3 shows the profiles of 6,tZ and d” obtained by numerical integration of (2.27) 
by the Runge-Kutta method with the increment of 5 of 0.005. Thc interface lies a t  
5 = l/p, which is larger than unity. The most significant result is that  the velocity 
of the plume vanishes a t  5 = 1.41, where the width diverges to infinity. This is because 
the buoyancy of the plume, defined relative to  the environment, becomes zero a t  5 = 1 
and negative below this level, as shown in figure 3 or by (2.25), so that the plume is 
decelerated by the buoyancy force until it  stops a t  5 = 1.41. If the interface lies above 
5 = 1.41 or p > 1/1.41 = 0.71, then the plume strikes the interface and is forcibly 
spread sideways along i t  before the spreading mechanism as described above comes 
into play. On the other hand, if the interface lies below 5 = 1.41 or p < 0.71, the plume 
cannot reach the interface, because i t  spreads before reaching there. This is a curious 
result. The smaller p means that  there is more intensive entrainment a t  the interface, 
which is realized by the impingement of a plume upon the interface; however, the 
assumption that ,8 < 0.71 leads us to the contradiction that the plume cannot come 
into contact with the interface. It is therefore concluded that p should be always larger 
than 0.71 in the asymptotic state. By definition this implies that  

F*/F < 0.41. (2.31) 

It should be noted that this conclusion does not depend on the functional form of 
the ent,rainment ratef(l”r). It will be shown later that  if the functional form obtained 
by our experiments is assumed forf(Fr) then the ratio F*/F  takes values in a much 
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narrower range than (2.31). Note also that (2.31) is derived under the assumption 
of the asymptotic state. So the observed value of p can be used to  judge if the 
measurement was made in the asymptotic state or not. 

Check of the accuracy of the series solutions (2.29) and (2.30) by comparison with 
the numerical solution has revealed that the series solution for J(5) (2.29) has 
sufficient accuracy in the whole range of between 0 and 1.41, whereas (2.30) for I?([) 
causes serious errors a t  5 > 1. Therefore the use of (2.30) should be avoided, except 
for small values of 5. 

The time of penetration 

The vertical distribution of buoyancy in the upper layer is described by 

(2.32) 

which is derived from (2.16), (2.17) and (2.24). Integrating (2.32) and substituting 
d5 = dZ'/(PH'), (2.26) and (2.29) into the resulting equation yield 

(2.33) 

where S(5) = 1 - 0.256 425- 0.019 1 1 F  - 0.004 15c - 0.001 25C4. (2.34) 

The integral constant is determined from the total buoyancy balance; that is, the 
integral of A: over the whole depth of the upper layer a t  time t' should equal the 
buoyancy supplied during the time interval between 0 and t'. Performing this 
integration results in 

(2.35) 

where (2.36) 

Putting 5 = 1/p in (2.35) and taking the difference from A;,  we have the buoyancy 
difference across the interface as 

y(P) = 1 - 0.064 1 1p-' - 0.002 73p-' - 0.000 42pP3 - 0.000 

t' -t' 
A i z  = - 

H '  
(2.37) 

where tk = Ai-~(~)jH-~pp-1{3y(P)-y(l/p)).  (2.38) 

The second term of the right-hand side of (2.38) includes variables that change with 
time such as H and p. However, calculation shows little change in value of this term, 
and so ti can be regarded as a constant depending on A;  alone. The time t i  thus 
determined expresses the time of penetration, because A; ,  vanishes a t  t' = t i ,  as shown 
by (2.37). 

The change of p near the time of penetration can be deduced with the use of (2.25), 
which shows that A' < 0 near the interface unless /3 = 1. I n  other words, the density 
of the plume fluid is smaller than the environment. Suppose here that p < 1 just when 
the buoyancy difference A;,  has vanished. The plume fluid should have a smaller 
density than the lower layer at this moment, so that it cannot penetrate through the 
interface. At the next moment the upper layer becomes heavier than the lower layer, 
which should result in a vigorous overturn of both layers. But this was not observed 
a t  all. Actually penetration of the plume occurred. It is therefore concluded that the 
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value of /3 should increase to unity or FX should decrease to zero a t  the moment when 
the buoyancy difference vanishes. Note that this conclusion as well as (2.37) and 
(2.38) have been derived on the assumption that the asymptotic state can be assumed 
up to the time of penetration. This of course needs experimental examination. 

3. Laboratory experiments 
The experiments were carried out in a rectangular glass-walled tank 37 cm deep 

and 60 cm x 29.2 cm in cross-section, which was filled with two layers of fluid. The 
fluid in the upper layer was fresh water and the lower layer was a denser, salt solution. 
The temperatures of both the layers were adjusted to  be the same. In  order to obtain 
a sharp interface between the layers the fresh water was carefully added on top of 
the saline water through a floating sponge. The interface was then sharpened by 
siphoning fluid from the centre of the interface (Linden 1973). The thickness of the 
interface determined from the density profile was about 1 em. 

When the aspect ratio HIR was larger than unity, a vertical circulation or a general 
overturning of the ambient fluid could take place instead of the filling process as 
assumed in the theory (BT). The initial aspect ratio H,JR was therefore set smaller 
than 0.5 to ensure that HIR did not exceed unity in the course of an experiment. 

As soon as the siphoning finished, the nozzle, of inside diameter 5 mm, was placed 
a t  the free surface in the centre of the tank, and the salt solution, 10-13 % heavier 
than fresh water, was introduced through it. A flowmeter was used to control the 
rate of addition of salt water. The flow rate was determined from the increase in height 
of the free surface and the elapsed time. 

In  order to promote transition from laminar to turbulent flow, a piece of wire mesh 
was placed in the nozzle (Baines 1975), and the pipe frame to which the nozzle was 
fixed was weakly tapped by a soft vinyl tube fitted to a motor rotating at a rate about 
1 Hz. This was weak enough to induce no motion in the water, but effectively fixed 
the transition point within a few millimetres from the nozzle exit. Adverse effects of 
tapping were checked by an experiment with no tapping (run 11, where a nozzle of 
inside diameter 1.8mm was used without wire mesh). The results showed no 
significant difference from the other runs, though in this run the transition point 
moved up and down by more than 1 cm in response to external disturbances. 

Vertical density profiles were measured by withdrawing 7 ml samples from 
10-25 depths through a thin horizontal tube. This is 1 mm diameter and 23 cm long 
with eight small holes drilled into its sides and is fitted to a vertical traverse 
mechanism. The density was measured using a commercial densimeter (Anton Paar 
DMA 60/602). 

A shadowgraph technique was used to follow changes in position of the first front 
(BT) and interface with time. To minimize errors due to reflection of light, the height 
of a projector was so adjusted a t  every measurement that the centre of the lens would 
be level with the first front or interface. The results of six runs where the initial and 
final density profiles were measured, showed that the interface positions determined 
from the images on the shadowgraph screen were always 2-8 mm lower than those 
from the density profiles, but that  the lowering velocities of the interface estimated 
by these two methods differed by only 4 % (the shadowgraph method gave smaller 
values). 

The advancing velocity of the first front was used to determine the entrainment 
coefficient a (BT). Determinations of the other variables were made as follows. Let 
the average of two successive observed values of H ( t )  be H and the average time be 
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t .  The entrainment rate a t  f ,  Q*(t),  was estimated by differencing the successive values 
of H ( t ) .  Since we know the time of penetration t,, we can estimate the buoyancy 
difference as a function of time by (2.37) or 

which in turn is used to give 

F*(t) = A&) Q * ( P )  

and P(t)  = F/ (F+F*) .  The valid.ity of (2.37) is shown in 94. Then the velocity and 
width of a plume at the interface are estimated from B a n d  P ( t )  with the use of the 
numerically solved asymptotic-state solutions. The value of the Froude number is 
calculated using these results. 

4. The results of experiments 
Thirteen runs were carried out to cover a wide range of experimental conditions, 

which are shown in table 1 .  The buoyancy input F ranged from 7.3 to 15.6 cm4/s3, 
the buoyancy of the lower-layer fluid A ,  from 7.1 to 50.1 cm/s2, and the initial 
thickness of the upper layer from 8.20 to 15.16 cm. As a result, the most important 
parameter A ;  was changed between 5.5 and 63.9 and the Froude number from 0.1 
to 2.9. 

The entrainment coefficient a was estimated from the rising velocity of the first 
front (BT). The value of a that  emerged from the measurements on seven runs was 
0.127 k0.025 (appropriate for the top-hat profile). The corresponding value for the 
Gaussian profile is 0.090, which is a little smaller than 0.100 used by BT and 0.093 
by Baines (1975). In  most cases the virtual source coincided with the actual nozzle 
exit. For the present purposes the value of a = 0.127 found experimentally will be 
used throughout the data reduction. 

Typical changes in the height of the interface from the bottom and the entrainment 
rate across the interface with time are shown in figure 4, observed in run 5. At first 
the interface lowers quickly with time as a result of intense entrainment. This occurs 
because the interface is exposed to the direct attack of a plume. When the asymptotic 
state is almost established, in about a filling-box timescale, the lowering of the 
interface slows down, and near the time of penetration the lowering velocity and 
therefore the entrainment rate again increase quickly. The upper layer decreases in 
thickness after penetration because the upper-layer fluid is transported to the bottom 
of the tank by the plume. The new third layer is formed on the bottom as the result 
of this transportation. These changes are shown in figure 1.  Figure 1 (f) is an 
interesting picture, for the three-layer structure looks as if it had been formed by the 
intrusion of the middle layer. 

Before presenting results on the entrainment, we examine some assumptions made 
in developing the theoretical model or used to estimate some quantities such as the 
Froude number, the buoyancy difference, and so on. Figure 5 shows the observed 
profiles of vertical buoyancy distribution in the upper layer and theoretical curves 
given by (2.35). The datum buoyancies at z’ = 1 were determined by extrapolating 
the data between z‘ = 0.5 and 0.8 to z‘ = 1 .  These profiles were measured a t  
t’ = 5.2-24.2, meaning that the asymptotic state had already been reached. Near the 
free surface the data lie between curves for /3 = 1 and /? = 0.75, meaning that the 
profiles are certainly affected by the entrainment a t  the interface. With increasing 
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Ainll A ,  F Ho t ,  
Run (cm s - ~ )  (cmsW2) ( ~ m ~ s - ~ )  (em) (min) A ;  tb Symbol 

104 
121 
121 
130 
116 
128 
132 
132 
132 
132 
132 
88.9 
88.9 

13.4 
13.3 
26.5 
7.1 

43.0 
38.7 
13.9 
25.9 
26.7 
25.2 
50.1 
41.7 
26.3 

10.2 11.94 85 11.3 6.9 
15.6 9.85 43 6.2 3.4 
9.7 10.27 213 18.1 14.7 
9.1 10.81 45 5.5 3.2 

10.6 6.24 184 12.1 9.4 
11.3 9.60 268 21.2 18.9 
11.0 8.74 64 6.7 4.2 
12.4 10.57 172 15.7 13.1 
13.9 10.79 160 15.5 12.9 
13.3 10.40 161 14.2 12.5 
10.6 8.20 350 21.3 21.1 
7.3 14.88 729 63.9 58.7 
8.1 15.16 402 38.8 34.0 

t F was calculated from the difference between initial and final density profiles. t ,  was calculated 
from observed H and A, ,  a t  t by t, = R2HAl,/F+t. Run 7 stopped a t  t = 20.8 min, run 8 a t  
t = 68.3 min, run 9 at  t = 30.0 min, run 10 at  t = 120 min, run 12 a t  t = 300 min and run 13 a t  
t = 266 min. 
1 A nozzle of inside diameter 1.8 mm was used without wire mesh or tapping of the frame. 
11 This denotes the buoyancy of the input fluid. 

TABLE 1. Experimental conditions 

Time (min) 

FIGURE 4. Typical example of changes with time in the height of the interface from bottom and 
entrainment flux across the interface (run 5 ) .  Filling-box timescale is 19.6 min, and penetration 
occurred at 184 min as shown by an arrow. The initial thickness estimated by extrapolation as shown 
by the dashed line was used instead of the observed value as a scale for non-dimensionalization 
(2.12). The difference of these two was 2.7 yo on the average. 

distance from the surface, the profiles tend to become steeper than the theoretical 
curve. This may be caused by mixing in the outflowing region which occupies about 
35% of the whole thickness of the upper layer. As a whole, however, agreement 
between the observation and theory is fairly good. 

Figure 6 plots the dimensionless penetration time against the dimensionless 
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FIGURE 5. Dimensionless buoyancy distributions compared with the asymptotic 
state solution (2.35). Symbols as in table 1. 

lower-layer buoyancy. There is a good linear relationship between them. The best-fit 

(4.1) 
line is 

With p = 0.85 and H = 1.3, (2.38) gives the numerical constant of 2.68. The 
agreement between the theory and experiments is thus very good. 

tb = Ah-2.92. 
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( t p ' - t ' ) / H '  

FIGURE 7. Buoyancy difference across the interface as a function of time obtained by the 
numerical simulation which does not assume the asymptotic state. 

Note that the values oft, for runs 7 , 8 ,  10,12 and 13 are not observed penetration 
times but times calculated from observed values of A i 2 ,  H' and t' by use of (2.37). That 
these data lie on the straight line given by (4.1) seems to suggest the validity of (2.37). 
This validity can be tested by carrying out another numerical experiment. Figure 
7 shows the results of a numerical simulation which solved the complete set of 
equations (2.13)-(2.21) with the entrainment law given by (4.5) and without assuming 
the asymptotic state. The algorithm used is the same as that of Germeles (1975) with 
a modification to include the boundary condition (2.21). The lower-layer buoyancy 
A;  is 50. Apparently (2.37) holds quite well from t' = 1 to the time of penetration. 
It is thus proved that (2.37) provides good estimation of the buoyancy difference 
across the interface throughout the course of the experiment. 

Evolution of the system 

Changes in the Froude number, entrainment rate, thickness of the upper layer and 
buoyancy flux across the interface with time are shown in figures 8-1 1 .  Only data 
with t' > 2 are plotted in figures 8-10 in order to  exclude transient data taken before 
the asymptotic state has been established. The most significant feature is that  those 
changes observed under a wide range of experimental conditions can be well 
represented by one curve, or in some cases a family of curves covering different values 
of the single dimensionless parameter A; .  

The Froude number is at first small, its value depending on the value of tb or A ; ,  
and increases steadily with time. In  other words, the interface is becoming less stable 
with time. This is due to the decrease in the buoyancy difference between the upper 
and lower layers. Calculation shows that the magnitude of Fr is primarily dependent 
on Ai2 ,  which varies almost in proportion to tb - t', so that F r  a ( tb - t')-h. This is in 
agreement with the tendency in figure 8. 

Responding to  changes in the Froude number, the entrainment rate increases 
steadily with time as shown in figure 9. This good correspondence suggests that  the 
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Fr 

0. 

t p t - t ’  

FIGURE 8. Changes in Froude number with time a t  t’ > 2 when the asymptotic state is 
established. Symbols as in table 1. 

t*‘-t’ 

FIGURE 9. Entrainment flux as a function of time. Only data for t’ > 2 are plotted to exclude 
transient data. The curve fitted to the data is &*’ = 0.41(t~-t’+0.6)-1.3. Symbols as in table 1 .  

entrainment rate is a function of the Froude number alone, as discussed by Baines 
(1975). A full discussion of this point is given later. The curve shown in this figure 
is 

which has been chosen from several functional forms merely because i t  is simple and 
a good approximation in the sense of least-square fitting. 

&*‘ = 0.41(tb-t’+0.6)-’.3, (4.2) 
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FIGURE 10. Increases in thickness of the upper layer with time at t' > 2 .  The three curves, given 
by (4.3), correspond from bottom to top to ti = 3 , 6  and 20 respectively. Curves for runs with tb > 9 
can be represented by the one for t i  = 20. Symbols as in table 1. 
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FIGURE 11.  Buoyancy flux across the interface as a function of time. This includes initial transient 
data, unlike figures 8, 9, 10, 12 and 13. Note that F*/F = (1 -B)//3, Symbols as in table 1. 
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Since Q*' = dH/dt' ,  (4.2) can be integrated to yield H .  The result is 

H-1 = 1.37(tb+0.6)-0.3 {( 1-- t' )-0'3- I}. 
t ;+  0.6 (4.3) 

Figure 10 shows the thickness of the upper layer as a function of time in a form 
suggested by this equation, for three different values of ti. As expected, agreement 
with (4.3) is very good. An interesting consequence of (4.3) is that the thickness at 
the time of penetration is given by 

H = 2.59-1.37(tb+0.6)-0.3, (4.4) 

which means that the maximum thickness attainable is 2.59 times of the initial 
thickness. 

Figure 11 shows the buoyancy flux across the interface as a function of time. This 
figure includes transient data from initial stages, unlike the other figures. Large values 
observed during t ' / tb  = 0 . 3  are such data. Between t ' / $  = 0.3-0.8 the data 
converge within a relatively narrow range around a mean of 0.18, then gradually 
decreasing to zero. This result is quite consistent with the theoretical predictions. The 
theory has required that the value of /3 = 1/ (1  +F*') be larger than 0.71 in the 
asymptotic state and increase to unity a t  penetration. This means that F*' < 0.41 
and decreases to zero as t + t p ,  which agrees with the observations. 

The entrainment rate 

Figures 8 and 9 have suggested that the entrainment rate is a function of the Froude 
number. This relation is shown in figure 12. Note that the entrainment rate is 
normalized by the volume flux of a plume a t  the interface a t  each time. This is better 
than &*' because the normalization by b& wH takes account of the change of a plume 
with time, whereas the non-dimensionalization factor depends only on the initial 
conditions. 

Though scatter is large, some definite tendencies can be read from this figure. At 
the Froude numbers smaller than 0.3 the data can be represented fairly well by a 
line of slope 3, which implies the functional form of Q*/b&wH oc Fr3. At the larger 
values of Fr used the entrainment rate deviates from the Fr3 law and approaches a 
constant value. This is similar to the results obtained by Turner (1968) in the 
measurement of entrainment caused by an oscillating grid. The data can well be 
represented as a whole by an empirical formula 

1  OF^^ Q* - - 
b& wH 1 + 3.1Fr2 + 1 .8Fr3 (4.5) 

This reduces to 1 .0Fr3 at Fr < 1 and approaches 0.56 as Fr + co , though an observed 
maximum value was 0.32. 

The buoyancy $ux a c r o a  the interface 

The buoyancy flux at the asymptotic state is plotted in figure 13 as a function of 
the Froude number. An important feature is that the value of F*/F takes a maximum 
a t  around Fr = 0.46 and decreases sharply a t  smaller and larger Froude numbers. 
The decrease in the buoyancy flux a t  the larger values of Fr may be understood by 
noting that large Froude numbers are realized only when the buoyancy difference 
is reduced to small values by the accumulation of salt. The curve in this figure was 
obtained using the entrainment law given by (4.5), by (2.37), H by (4.3) and the 

5 F L M  147 



124 M .  Kumagai 

0.1 

0.2 

0.1 

Q* 
bH2 w f f  

0.04 

0.02 

0.01 

0.004 

0.002 

Fr = w,/(bH A L Z ) ~  

FIGURE 12. Entrainment volume flux as a function of Fr observed a t  t’ > 2 .  The curve is given 
by Q*/bRw, = l.0Fr3/(1+3.1 Fr2+1.8Fr3).  Symbols as in table 1. 
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FIQURE 13. Buoyancy flux across the interface as a function of Fr observed a t  t’ > 2. The curve 
is a theoretical prediction based on figure 12. The straight line is the result of Baines (1975). Symbols 
as in table 1. 
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numerically solved asymptotic solutions. Though the data a t  Fr < 0.5 are very 
scattered, agreement is fairly good. The straight line is the result' of Baines (1975), 
and comments are given in $5.1. 

5. Discussion 
5.1. Comments on Baines (1975) 

There are some differences between our results and those of Baines (1975, hereinafter 
referred to as B). The most obvious and serious difference emerges from comparison 
of the buoyancy fluxes across the interface. The conclusion of B is a linear relationship 
between F * / F  and Fr,  partly reproduced as a straight line in figure 13. This is 
apparently inconsistent with our results. The data of B extend up to F * / F  = 1.2 a t  
Fr = 1.1, while a t  this value of Fr our result is F * / P  = 0.125, only 10 yo of the above 
value (figure 13). As shown in 52, the value of /3 should always be larger than 0.71, 
and the dimensionless buoyancy flux F*/F cannot exceed 0.41 in the asymptotic 
state. About half of the data of B exceed this theoretical upper limit. The problem 
in B is also revealed by a simple energy argument, presented in 55.3, that  the 
dimensionless buoyancy flux is equal to the ratio of the increase in potential energy 
due to the redistribution of the initial density profile, to the potential energy made 
available by buoyancy input. It is evident from this argument that F * / F  cannot be 
larger than unity; however, the results of B include a datum point that  violates this 
restriction. 

These differences seem to be attributed to the different definition of the buoyancy 
flux across the interface; B's definition is 

while ours is 

As shown in deriving (2.11), the use of the buoyancy difference A, ,  is correct in 
general. However, if the depth of the upper layer can be assumed constant, B's 
definition can be a good approximation. For example, a t  early times of a run that 
starts with a large buoyancy difference or a small initial Froude number, the depth 
of t,he upper layer will remain almost unchanged and A , ,  x A , .  B's results for small 
values of Fr are thus close to ours; the volume entrainment flux Q* increased with 
Fr3, and the buoyancy flux F* increased with Fr a t  small values of Fr,  in good 
agreement with the tendencies in figures 12 and 13. 

At large values of Fr, however, the constant-depth approximation can no longer 
hold, resulting in overestimation of the buoyancy flux. Too-large values of F * / F  in 
B seem to have resulted from this overestimation. The relation between Q* and Fr 
is also incorrect, because Fr. depends on the width and velocity of a plume a t  the 
interface, which depend on the value of F*. Thus the results in B, which are based 
on the constant-depth approximation, are correct only a t  small values of Fr. 

5.2. Entrainment rate 

A number of laboratory experiments of two types have been performed to clarify the 
processes of entrainment against a density jump. I n  the first kind, which has been 
extensively investigated by Turner (1968, 19731, the turbulence is produced by 
stirring mechanically either in one or in both layers. He found that the ratio of 
entrainment velocity to stirring velocity can be expressed as functions of an overall 
Froude number. For density differences produced by heat alone, the functional 

5-2 
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dependence is close to  Fr2 except at large values of Fr,  where i t  approaches a finite 
limit. For experiments with a salinity difference across the interface, the mixing rate 
is the same as in the heat experiments a t  large values of Fr, but falls progressively 
below this as Fr is decreased, with the approximate form Fr3. These results were 
confirmed by Wolanski & Brush (1975) and Hopfinger & Toly (1976). In  these 
experiments there is no significant mean flow or shear. The second type of experiment 
involves shear-flow turbulence produced either by a surface stress in an annular tank 
(Kato & Phillips 1969; Kantha, Phillips & Azad 1977), or by way of surface jets or 
bottom currents (Ellison & Turner 1959 ; Lofquist 1960). These results are discussed 
in detail by Turner (1973). 

Our experiments correspond to the first type with a salinity difference, since there 
is no significant mean flow. Interestingly the relation between the dimensionless 
entrainment rate and the Froude number shown in figure 12 is qualitatively in good 
agreement with Turner’s result, in spite of the fact that  the turbulence is produced 
in different ways. Some appropriate scaling for velocity and length could bring a good 
quantitative agreement. 

A mechanistic explanation of the Fr3 mixing law was proposed by Linden (1973) 
based on the investigation on vortex rings projected against a sharp density interface. 
Observation showed that the interface was deflected downwards by the ring and then 
recoiled to cause the fluid accumulated in the depression to be ejected into the upper 
layer. This is very similar to the phenomena observed in our experiments. Linden’s 
model is based on the assumptions that the kinetic energy of a vortex ring is converted 
to an increase in potential energy due to the entrainment through the deflection-recoil 
process on a timescale that is determined by the density difference and the scale of 
the vortex ring, and that the area of the depression of the interface, normalized by 
the size of the ring, changes proportionally to Fr-?-. But if one examines figure 5 of 
Linden (1973) carefully, one finds that the last assumption is true only at  smaller 
Froude numbers and that actually the power index on Fr increases from -2  to 0 
as Fr increases. When Linden derived the Fr3 mixing law from the above assumptions, 
this observed tendency was neglected. If one is true to the experimental result, one 
finds rather a Fr” mixing law where n’ = 3 only a t  small Froude numbers and de- 
creases towards 1 as Fr increases. This is almost the same as the variation found in our 
experiments. It is interesting that Linden’s model, when it is modified in a manner 
that makes it more faithful to his experiment, shows better agreement with our result. 
Thus the three different kinds of experiments by Turner, Linden and ourself yield 
essentially the same result that  the entrainment rate obeys the Fr3 law a t  small Fr 
numbers and tends to become saturated with an increase in Fr. This suggests that 
the same transport mechanism is working in the manner assumed by Linden. 

5.3. Application to penetrative convection 
The investigation of the surface mixed layers of the atmosphere and ocean includes 
the problem of specifying the buoyancy fluxes across the inversion and thermocline. 
The values of the buoyancy flux are usually reported in the form of B*/B, where B 
and B* denote respectively the buoyancy input from the surface and the buoyancy 
flux due to entrainment. If the energy released by gravitational instability due to 
the buoyancy input has completely been used to produce entrainment across the 
density interface, the ratio B*/B becomes unity, which is the case assumed by Ball 
(1960). Evidently this is the theoretically maximum value. 

Stull ( 1 9 7 6 ~ )  has summarized the values of this ratio used in models and inferred 
from observations, showing a wide scatter between zero and unity. Observations of 
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the atmospheric boundary layer seem to give larger values around 0.1-0.4 (Stull 
1976a; Caughey & Palmer 1979), whereas laboratory experiments using linearly 
stratified waters heated from below seem to yield smaller values; 0.11-0.16 by 
Deardorff et aE. (1969), 0.12 and 0.19 by Willis & Deardorff (1974) and 0.25 by 
Deardorff et al. (1980). The large values and variation of the ratio obtained from 
atmospheric observations may be accounted for by simultaneous operation of many 
processes such as buoyant convection and wind shear. Stull (1976b) showed that 
analysis of field observations that took these processes into account gave a smaller 
value of B*/B = 0.10. A clear-cut series of observations on convective deepening that 
was free from wind shear and horizontal motions was reported by Farmer (1975). He 
observed a developing mixed layer beneath lake ice and obtained the ratio ranging 
between 0.06 and 0.34 with an average of 0.17. Thus the value of B*/B around 0.1-0.2 
seems plausible. (Deardorff el al. (1969), Willis & Deardorff and Farmer gave the ratio 
R of the negative and positive areas under the buoyancy-flux curve. The values of 
B*/B given here were estimated from these ratios using B*/B = &, which is valid 
for linear profiles of buoyancy flux.) 

The corresponding result of our investigation is shown in figure 13, for 
B*/B = F*/F.  The observed values of F*/F a t  the smaller Froude numbers used lie 
within a range from 0.09 to 0.25, which is in good agreement with the values cited 
above. Another interesting point is the Froude-number dependence of F*/F.  The 
theoretical curve indicates that the ratio takes a maximum value of 0.168 a t  Fr = 0.46 
and decreases as Fr goes away from this value. The decrease is sharper a t  larger values 
of Fr, and when the density difference vanishes the buoyancy flux is reduced to 
become almost negligibly small. 

The Froude-number dependence has been reported by Kantha (1980), who carried 
out experiments on penetrative convection in a two-layered fluid using salt flux from 
a porous bed a t  the top of the water column. The tendency found is somewhat 
different from ours, however. As Fr increased, his ratio B*/B increased gradually to 
around 0.2, and remained a t  this value for moderate values of Fr. This change as 
well as the magnitude of B*/B agrees very well with our result. At larger Froude 
numbers, however, the value of B*/B again increased in contrast with our finding. 
The reason is not clear. 

The energy budget within the mixed layer has provided a basic viewpoint in the 
theoretical treatment of entrainment (Ball 1960; Turner 1973, 1981; Zeman & 
Tennekes 1977 ; Sherman et al. 1978; Linden 1979,1980). We here examine the energy 
budget of our system briefly using the energy ratio R* introduced by Manins & Turner 
(1978). This ratio is defined as the ratio of the increase in potential energy due to  
the redistribution of the initial density profile, to the potential energy made available 
by buoyancy input from the surface. I n  the case of stratified two layers separated 
by a sharp density interface, it can be shown that the energy ratio K" is exactly equal 
to the flux ratio B*/B (see Appendix) : 

R" = B*/B. (5.1) 

Note that this is different from the relation for linear stratifications obtained by 
Manins & Turner. Figure 13 thus also shows the energy ratio as a function of Fr. It 
is found that the potential energy supplied by the plume fluid is utilized most 
efficiently, 16.8 yo, a t  Fr = 0.46 and less efficiently a t  both smaller and larger values 
of Fr. The low efficiency at larger Froude numbers seems to be attributed to energy 
radiation by internal waves at the interface which became larger as the time of 
penetration was approached. The low efficiency a t  smaller values of Fr, on the other 
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hand, may be due to large shears between the plume fluid and interface, and resulting 
large energy dissipation, since the depressions of the interface formed by the 
impingement of a plume are shallow, probably with large shears. This point, however, 
needs further investigation. 

The energy ratio R* has a similar physical meaning to the flux Richardson number 
Rf which is defined as the fraction of the available kinetic energy that appears as 
potential energy produced by mixing. The difference is only that Rf is based on the 
available kinetic energy, whereas R* is based on the potential energy made available 
by buoyancy input. Linden (1979,1980) has examined many laboratory experiments 
on mixing in stratified fluids to investigate the behaviour of Rf as a function of the 
overall Richardson number Ri ( =  FrP2).  He has found that Rf increases from zero 
as Ri does, reaches a maximum of about 0.13-4.25, and then decreases with further 
increase in Ri.  This is very similar t o  figure 13. He has examined only the case where 
the driving force for mixing is mechanical in origin and mixing by convective 
processes has been excluded. But our experiments are convective in nature. It may 
thus be considered that the relationship as shown in figure 13 is very general and 
independent of the nature of the driving force for mixing. 

Our experiments thus provide much useful information on the mechanisms of 
entrainment at the boundary of a mixed layer. There is probably a good similarity 
between the behaviour of a plume in a confined two-layered region and convective 
elements in a mixed layer. As pointed out in $ 2 ,  the motion of the interface produced 
by the impingement of a plume has much in common with the phenomena revealed 
by radar observations. There are of course many differences between our experiment 
and the actual environment. The most serious points would be the use of an isolated 
source of buoyancy and a quiescent environment and the neglect of interactions 
among convective elements as pointed out by BT. The use of a continuing plume 
instead of thermals, which may be better as a model of convective elements in the 
atmosphere, would not be a serious deficiency, because as far as the entrainment is 
concerned the behaviour of a plume and thermal are essentially the same, as shown 
by comparison with Linden (1973). 

I wish to thank Professor J. Stewart Turner, F.R.S., for providinggood, stimulating 
surroundings to carry out this investigation. I would also like to thank Ross 
Wylde-Browne, Derek Corrigan and Joe Micallef for their technical assistance, John 
Taylor for allowing me to use his apparatus to  measure detailed profiles of the vertical 
density distribution, and Mrs Beryl Palmer for retyping the manuscript several times. 
Professor Turner read an earlier version of this paper carefully, and his effort is 
greatly appreciated. 

Appendix 
Following Manins & Turner (1978), we derive a relation between the energy ratio 

R* and flux ratio B * / B  for two stratified layers separated by a sharp density 
interface. Consider a water column stratified by a salinity difference heated from 
below. The density profiles are shown in figure 14, where we have assumed a 
homogeneous buoyancy distribution in the lower mixed layer for the sake of 
simplicity. This is a good approximation for the asymptotic state. The buoyancy 
balances for S- and T-profiles are 

h p  AS = Ah pSo, (A 1) 

hga AT - B At, (A 2) 
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A h  f 
h 

I t = A r  

- PSO - p increasing 

FIGURE 14. The distributions of density due to salinity and heat, produced 
when the gradient is heated from below. 

where g is the acceleration due to gravity, B is the input flux of buoyancy due to 
heating, and a and /3 are the coefficients of expansion for T and S respectively 
( a  < 0, /3 > 0). The buoyancy flux B* due to entrainment is 

The potential energy released by heating from below, and distributing the heat 
through the depth h, is given by E ,  = -ih2ga AT. The increase in the potential energy 
in the S-field is E,  = ih2g/3 AS, where ( A  1 )  has been used. We therefore have 

Substituting for /3 AS in ( A  4) using (A l ) ,  for a AT using ( A  2 ) ,  and using (A 3) results 
in 

lB.  R* = B* 
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